TITAN S

ANGLE BRACKET FOR SHEAR AND TENSILE **FORCES**

HOLES FOR HBS PLATE

Fastening with HBS PLATE Ø8 screws using a screwdriver makes installation easy and fast and allows you to work safely and comfortably. The angle bracket can be easily disassembled by removing the screws.

85 kN SHEAR

Exceptional shear strengths. Up to 85,9 kN on concrete (with TCW washer). Up to 60,0 kN on timber.

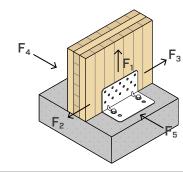
75 kN TENSILE

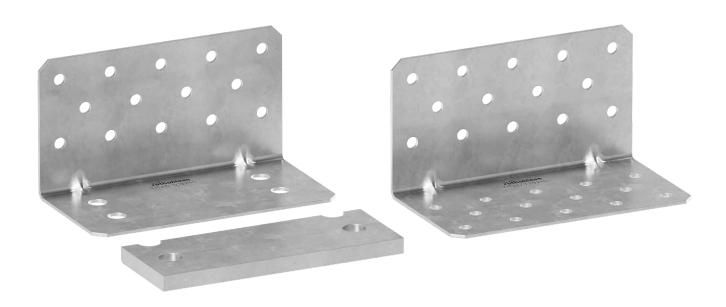
On concrete, the TCS angle bracket with TCW washer provides excellent tensile strength. $R_{1,k}$ up to 75,9 kN characteristic values.

USA, Canada and more design values available online.

SERVICE CLASS

MATERIAL




TITAN S: DX51D + Z275 carbon steel.

TITAN WASHER: S235 + Fe/Zn12c carbon steel

EXTERNAL LOADS



FIELDS OF USE

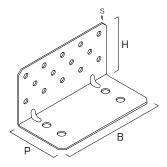
Shear and tension joints for timber walls. Suitable for walls subject to high stress. Timber-to-timber, timber-to-concrete and timber-to-steel configurations.

Can be applied to:

- solid timber and glulam
- CLT and LVL panels

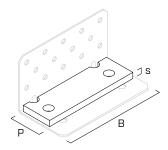
EASY INSTALLATION

The angle brackets fastening using a reduced number of HBS PLATE Ø8 screws makes installation faster and easier.

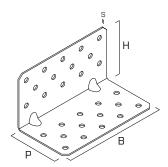

ALL DIRECTIONS

Exceptional strength values in all directions allow use even in special or non-standard situations.

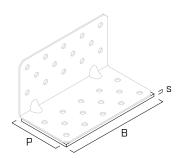
■ CODES AND DIMENSIONS


TITAN S - TCS | CONCRETE-TO-TIMBER JOINTS

CODE	В	Р	Н	holes	n _V Ø11	s		pcs
	[mm] <i>[in]</i>	[mm] <i>[in]</i>	[mm] [in]	[mm] <i>[in]</i>	n _V Ø0.44 [pcs]	[mm] <i>[in]</i>		
TCS240	240 9 1/2	123 4 13/16	130 5 1/8	4 x Ø17 4 x Ø0.67	. 14	3 0.12	•	10

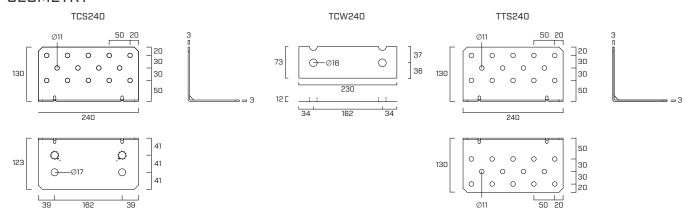

TITAN WASHER - TCW240 | CONCRETE-TO-TIMBER JOINTS

CODE	B [mm] <i>[in]</i>	P [mm] <i>[in]</i>	s [mm] <i>[in]</i>	holes [mm] [in]		pcs
TCW240	230 9 1/16	73 2 7/8	12 0.47	Ø18 Ø0.71	•	1

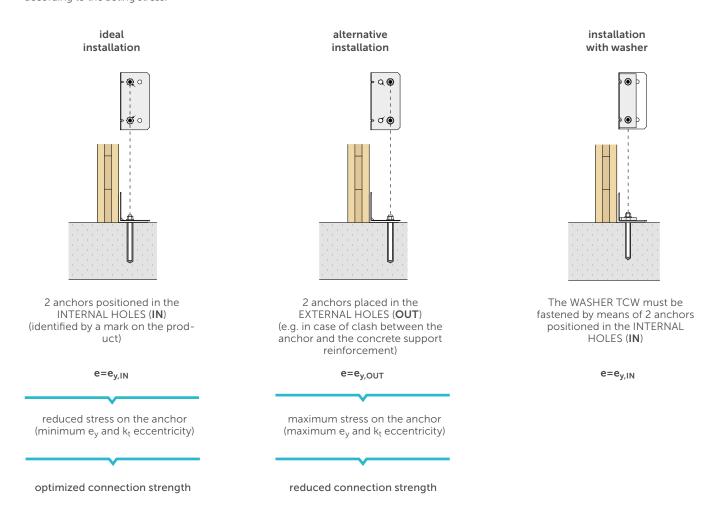

TITAN S - TTS | TIMBER-TO-TIMBER JOINTS

CODE	В	Р	Н	n _H Ø11 n _H Ø0.44	n _V Ø11 n _V Ø0.44	S		pcs
	[mm] <i>[in]</i>	[mm] <i>[in]</i>	[mm] <i>[in]</i>	[pcs]	[pcs]	[mm] <i>[in]</i>		
TTS240	240 9 1/2	130 5 1/8	130 5 1/8	14	14	3 0.12	•	10

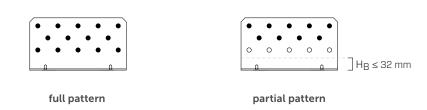
ACOUSTIC PROFILE | TIMBER-TO-TIMBER JOINTS


CODE	type	B [mm] <i>[in]</i>	P [mm] <i>[in]</i>	s [mm] <i>[in]</i>		pcs
XYL35120240	XYLOFON PLATE	240 9 1/2	120 <i>4 3/4</i>	6 0.24	•	10

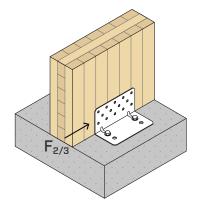
FASTENERS


type	description		d	support	page
			[mm]		
HBS PLATE	pan head screw	<u> </u>	8	2)))))	573
HBS PLATE EVO	C4 EVO pan head screw	<u> </u>	8		573
AB1	CE1 expansion anchor		16		536
SKR	screw-in anchor		16		528
VIN-FIX	vinyl ester chemical anchor		M16		545
HYB-FIX	hybrid chemical anchor		M16		552
EPO-FIX	epoxy chemical anchor		M16		557

GEOMETRY


INSTALLATION ON CONCRETE

To fix **TITAN TCS** angle bracket to the concrete foundation, **2 anchors** must be used, according to one of the following installation configurations, according to the acting stress.



■ TCS240 | PARTIAL FASTENING PATTERNS

In the presence of design requirements such as stresses of different value or the presence of an intermediate H_B layer (levelling grout, sill or ground) between the wall and the supporting surface, a partial fastening pattern can be adopted.

■ STRUCTURAL VALUES | TCS240 | TIMBER-TO-CONCRETE | F_{2/3}

TIMBER STRENGTH

configuration	fasten	ing holes Ø11		R _{2/3,k timber}	K _{2/3,ser}
on timber	type	ØxL	n _V		
		[mm]	[pcs]	[kN]	[N/mm]
full pattern	HBS PLATE	Ø8 x 80	14	70,3	8200
partial pattern	HBS PLATE	Ø8 x 80	9	36,1	7000

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions for anchors installed in the internal (IN) or external (OUT) holes.

configuration	fasten	ing holes Ø17		R _{2/3,d concrete}					
on concrete	concrete type Ø x L n_H		n _H	IN ⁽¹⁾	OUT ⁽²⁾	e _{y,IN}	e _{y,OUT}		
		[mm]	[pcs]	[kN]	[kN]	[mm]	[mm]		
	VIN-FIX 5.8	M16 x 160		67,2	52,9				
uncracked	VIN-FIX 8.8	M16 x 160		90.1	70,9				
инстаскей	SKR	16 x 130		65,0	51,2				
	AB1	M16 x 145		79,0	62,4				
	VIN-FIX 5.8/8.8	M16 x 160	2	55,0	43.2	39,5	80,5		
cracked	SKR	16 x 130		45,3	35,7				
	AB1	M16 x 145		67,0	53,1				
seismic	HYB-FIX 8.8	M16 x 195		35,2	27,7				
Seisiffic	EPO-FIX 8.8	M16 x 195		47,1	37,2				

ANCHORS INSTALLATION PARAMETERS

installation	anchor type			h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type Ø x L [mm] [i		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	VIN-FIX 5.8 /8.8	M16 x 160	3	134	134	140	18	
	HYB-FIX 8.8	M16 x 195	3	164	164	170	18	
TCS240	EPO-FIX 8.8	M16 x 195	3	164	164	170	18	200
	SKR	16 x 130	3	85	127	150	14	
	AB1	M16 x 145	3	85	97	105	16	

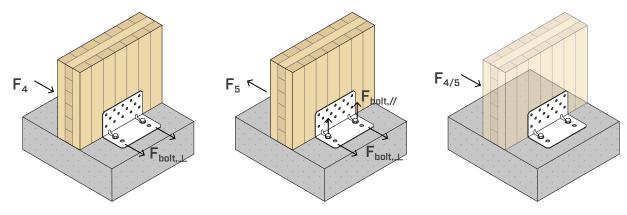
Precut INA threaded rod, with nut and washer: see page 562. MGS threaded rod class 8.8 to be cut to size: see page 174.

 $\begin{array}{ll} t_{\text{fix}} & \text{fastened plate thickness} \\ h_{\text{nom}} & \text{nominal anchoring depth} \\ h_{\text{ef}} & \text{effective anchoring depth} \\ h_{1} & \text{minimum hole depth} \end{array}$

 d_0 hole diameter in the concrete support

h_{min} concrete minimum thickness

NOTES


 $\,^{(\!1\!)}\,$ Installation of the anchors in the two internal holes (IN).

 $^{\left(2\right) }$ Installation of the anchors in external holes (OUT).

For the GENERAL PRINCIPLES of calculation, see page 241.

For the anchors verification refer to page 241.

■ STRUCTURAL VALUES | TCS240 | TIMBER-TO-CONCRETE | F₄ | F₅ | F_{4/5}

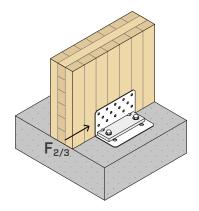
	TIMBER				ST	EEL	CONCRETE			
	fastenii	ng holes Ø11		R _{4,k timber}	R _{4,k}	steel	fastenir	ng holes	IN	(1)
F ₄	type	ØxL	n _V				Ø	n _H	$\mathbf{k}_{t_{\perp}}$	k _{t//}
		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]		
TCS240	HBS PLATE	Ø8 x 80	14	21,1	18,1	Yмо	M16	2	0,5	-

The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_{t\perp} \times F_{4,d}$

	TIMBER				STI	EEL	CONCRETE					
	fastenir	ng holes Ø11		R _{5,k timber}	R _{5,k steel}		R _{5,k steel}		R _{5,k steel} fastening holes		s IN ⁽¹⁾	
F ₅	type	ØxL	n _V				Ø	n _H	$\mathbf{k}_{t\perp}$	k _{t//}		
		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]				
TCS240	HBS PLATE	Ø8 x 80	14	17,1	4,3	Yмо	M16	2	0,5	0,36		

The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_{t\perp} \times F_{5,d}$; $N_{Sd,z} = 2 \times k_{t/} \times F_{5,d}$

	TIMBER				STI	EEL	CONCRETE			
F _{4/5}	fastenii	ng holes Ø11		R _{4/5,k timber}	R _{4/5,}	k steel	fastenir	ng holes	IN	(1)
TWO ANGLE	type	ØxL	n _V				Ø	n _H	$\mathbf{k}_{t\perp}$	$k_{t/\!/}$
BRACKETS		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]		
TCS240	HBS PLATE	Ø8 x 80	14 + 14	27,4	18,8	У мо	M16	2 + 2	0,39	0,08


The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_{t\perp} \times F_{4/5,d}$; $N_{Sd,z} = 2 \times k_{t/\!\!/} \times F_{4/5,d}$

NOTES

[•] The F_4 , F_5 , $F_{4/5}$ values in the table are valid for the calculation eccentricity e=0 (timber elements prevented from rotating).

⁽¹⁾ Installation of the anchors in the two internal holes (IN). For the GENERAL PRINCIPLES of calculation, see page 241.

■ STRUCTURAL VALUES | TCS240 + TCN240 | TIMBER-TO-CONCRETE | F_{2/3}

TIMBER STRENGTH

configuration	fasten	ing holes Ø11		R _{2/3,k timber}	K _{2/3,ser}
on timber	type	ØxL	n _V		
		[mm]	[pcs]	[kN]	[N/mm]
TCS240 + TCW240	HBS PLATE	Ø8 x 80	14	85.9	9000

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration	fastening holes Ø17			R _{2/3,d concrete}				
on concrete	type	Ø x L	n _H	IN ⁽¹⁾	e _{y,IN}	e _{z,IN}		
		[mm]	[pcs]	[kN]	[mm]	[mm]		
	VIN-FIX 8.8	M16 x 195		60,9				
uncracked	HYB-FIX 8.8	M16 x 195		81,4				
uncracked	SKR	16 x 130		32,7				
	AB1	M16 x 145		42,5				
	VIN-FIX 5.8/8.8	M16 x 195	2	33,6	39,5	78,5		
cracked	HYB-FIX 8.8	M16 x 195		72,0				
	AB1	M16 x 145		30,3				
	HYB-FIX 8.8	M16 x 245		24,7				
seismic	EPO-FIX 8.8	M16 x 245		31,2				

ANCHORS INSTALLATION PARAMETERS

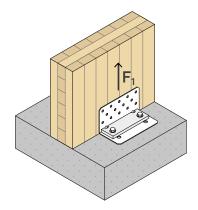
installation	anchor type			h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	VIN-FIX 5.8/8.8	M16 x 195	15	160	160	165	18	200
	HYB-FIX 8.8	M16 x 195	15	160	160	165	18	200
TCS240 +	ΠΙΔ-ΓΙΛ 0.0	M16 x 245	15	210	210	215	18	250
TCW240	EPO-FIX 8.8	M16 x 245	15	210	210	215	18	250
	SKR	16 x 130	15	85	115	145	14	200
	AB1	AB1 M16 x 145		85	97	105	16	200

00

 $\begin{array}{ll} t_{fix} & \text{fastened plate thickness} \\ h_{nom} & \text{nominal anchoring depth} \\ h_{ef} & \text{effective anchoring depth} \\ h_{1} & \text{minimum hole depth} \end{array}$

d₀ hole diameter in the concrete support

h_{min} concrete minimum thickness


Precut INA threaded rod, with nut and washer: see page 562. MGS threaded rod class 8.8 to be cut to size: see page 174.

NOTES

For the anchors verification refer to page 241.

⁽¹⁾ Installation of the anchors in the two internal holes (IN). For the GENERAL PRINCIPLES of calculation, see page 241.

■ STRUCTURAL VALUES | TCS240 + TCW240 | TIMBER-TO-CONCRETE | F₁

TIMBER STRENGTH

		TIMBER					STEEL		
configuration on timber		fasten	ing holes Ø11		R _{1,k timber}	R _{1,k st}	eel	K _{ser}	
		type	ØxL	n _V					
			[mm]	[pcs]	[kN]	[kN]	Ysteel	[N/mm]	
TC\$240 + TCW240	full pattern	HBS PLATE	Ø8 x 80	14	_(3)	75,9		11500	
TCS240 + TCW240	partial pattern ⁽¹⁾	HBS PLATE	Ø8 x 80	9	33,9	75,9	У мо	-	

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration	fastening holes Ø17			R _{1,d concrete}		
on concrete	type	ØxL	n _H	IN ⁽²⁾	k _{t//}	
		[mm]	[pcs]	[kN]		
uncracked	VIN-FIX 5.8/8.8	M16 x 195		27,4		
инстаскей	HYB-FIX 5.8/8.8	M16 x 195		45,7		
	VIN-FIX 5.8/8.8	M16 x 195		15,3		
cracked	HYB-FIX 5.8/8.8	M16 x 195		31,2		
	HYB-FIX 5.8/8.8	M16 x 245	2	42,2	1,08	
	HYB-FIX 8.8	M16 x 245		14,9		
seismic	HIB-FIX 8.8	M16 x 330		21,1		
	EDO EIV O O	M16 x 245		19,8		
	EPO-FIX 8.8	M16 x 330		28,1		

ANCHORS INSTALLATION PARAMETERS

installation	anchor type			h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
VIN-FI	VIN-FIX 5.8/8.8	M16 x 195	15	160	160	165	18	200
		M16 x 195	15	160	160	165	18	200
TCS240 +	HYB-FIX 5.8/8.8	M16 x 245	15	210	210	215	18	250
TCW240		M16 x 330	15	295	295	300	18	350
	EPO-FIX 8.8	M16 x 245	15	210	210	215	18	250
	LF O-FIX 0.0	M16 x 330	15	295	295	300	18	350

 $\begin{array}{ll} t_{\text{fix}} & \text{fastened plate thickness} \\ h_{\text{nom}} & \text{nominal anchoring depth} \\ h_{\text{ef}} & \text{effective anchoring depth} \end{array}$

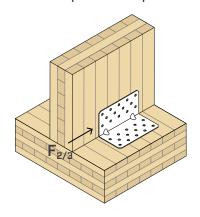
h₁ minimum hole depth

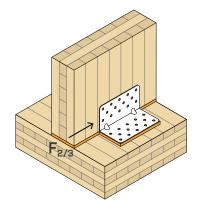
 d_0 hole diameter in the concrete support

h_{min} concrete minimum thickness

Precut INA threaded rod, with nut and washer: see page 562. MGS threaded rod class 8.8 to be cut to size: see page 174.

NOTES

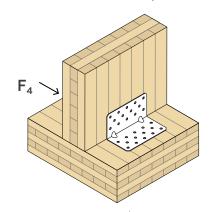

 $^{(1)}$ In case of design requirements such as F_1 stress of different value or presence of an H_B intermediate layer between the wall and the supporting surface, partial fastening with $H_B \leq 32$ mm can be adopted for application on CLT panel.

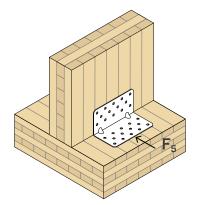

 $\,^{(2)}\,$ Installation of the anchors in the two internal holes (IN).

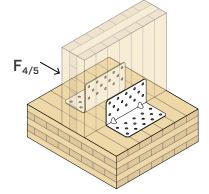
For the GENERAL PRINCIPLES of calculation, see page 241. For the anchors verification refer to page 241.

 $^{^{(3)}}$ The experimental failure mode is steel-side, so no timber-side failure is considered.

■ STRUCTURAL VALUES | TTS240 | TIMBER-TO-TIMBER | F_{2/3}






TIMBER STRENGTH

configuration	fa	stening holes Ø11		profile	R _{2/3,k timber}	K _{2/3,ser}	
on timber	type	ØxL	n _V	n _H	s		
		[mm]	[pcs]	[pcs]	[mm]	[kN]	[N/mm]
TTS240	HBS PLATE	Ø8 x 80	14	14	-	60,0	5600
TTS240 + XYLOFON	HBS PLATE	Ø8 x 80	14	14	6	35,7	6000

■ STRUCTURAL VALUES | **TTS240** | TIMBER-TO-TIMBER | F₄ | F₅ | F_{4/5}

	TIMBER				STEEL		
	fastening holes Ø11 R _{4,k timber}			er R _{4,k steel}			
F ₄	type	ØxL	n				
		[mm]	[pcs]	[kN]	[kN]	Ysteel	
TTS240	HBS PLATE	Ø8 x 80	14 + 14	20,7	20,9	У мо	

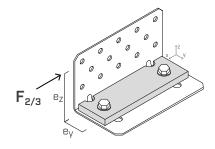
		TIMBER	STEEL			
	fastening holes Ø11			R _{5,k timber}	R _{5,k}	steel
F ₅	type	Ø x L	n			
		[mm]	[pcs]	[kN]	[kN]	Ysteel
TTS240	HBS PLATE	Ø8 x 80	14 + 14	16,8	4,2	У мо

		TIMBER	STEEL			
F _{4/5}	fastening holes Ø11			R _{4/5,k timber}	R _{4/5,k steel}	
	type	ØxL	n _V			
TWO ANGLE BRACKETS		[mm]	[pcs]	[kN]	[kN]	Ysteel
TTS240	HBS PLATE	Ø8 x 80	28 + 28	25,2	23,4	У мо

NOTES

For the GENERAL PRINCIPLES of calculation, see page 241.

[•] The F_4 , F_5 , $F_{4/5}$ values in the table are valid for the calculation eccentricity e=0 (timber elements prevented from rotating).


■ TCW240 | ANCHORS VERIFICATION FOR STRESS LOADING F_{2/3} WITH WASHER

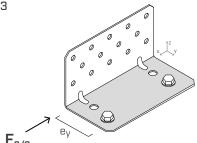
Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the tabulated geometric parameters (e).

The calculation eccentricities \mathbf{e}_y and \mathbf{e}_z refer to installation with WASHER TCW of 2 internal anchors (IN).

The anchor group must be verified for:

 $V_{Sd,x} = F_{2/3,d}$ $M_{Sd,z} = F_{2/3,d} \cdot e_{y,IN}$ $M_{Sd,y} = F_{2/3,d} \cdot e_{z,IN}$

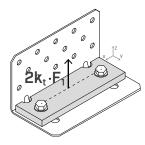
■ TCS240 | ANCHORS VERIFICATION FOR STRESS LOADING F_{2/3}


Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the tabulated geometric parameters (e).

ey calculation eccentricities vary depending on the type of installation selected: 2 internal anchors (IN) or 2 external anchors (OUT).

 $V_{Sd,x} = F_{2/3,d}$

 $M_{Sd,z} = F_{2/3,d} \cdot e_{y,IN/OUT}$


TCS240 - TCW240 | ANCHORS VERIFICATION FOR STRESS LOADING F₁ WITH WASHER

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the tabulated geometric parameters (k_t) .

2 internal anchors (IN) must be provided for installation on concrete with WASHER TCW.

The anchor group must be verified for:

 $N_{Sd,z} = 2 \times k_{t/\!/} \cdot F_{1,d}$

GENERAL PRINCIPLES

- Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0496.
- Design values can be obtained from characteristic values as follows:

$$R_{d} = min \quad \begin{cases} \frac{R_{k, \ timber} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{k, \ steel}}{\gamma_{MO}} \\ R_{d, \ concrete} \end{cases}$$

The coefficients $k_{mod},\,\gamma_M$ and γ_{M0} should be taken according to the current regulations used for the calculation.

- Dimensioning and verification of timber and concrete elements must be carried out separately. Verify that there are no brittle failures before reaching the connection strength.
- Structural elements in timber, to which the connection devices are fastened, must be prevented from rotating.
- A timber density of $\rho_k = 350 \text{ kg/m}^3$ was considered for the calculation process. For higher ρ_k values, the strength on timber side can be converted by the k_{rlens} value:

$$k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5}$$
 for 350 kg/m³ $\leq \rho_k \leq 420 \text{ kg/m}^3$
 $k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5}$ for LVL with $\rho_k \leq 500 \text{ kg/m}^3$

- In the calculation phase, a strength class of C25/30 concrete with thin reinforcement was considered, in the absence of spacing and distances from the edge and minimum thickness indicated in the tables listing the installation parameters of the anchors used. The strength values are valid for the calculation hypothesis defined in the table; for boundary conditions different from the ones in the table (e.g. minimum distances from the edge or different concrete thickness), the concrete-side anchors can be verified using MyProject calculation software according to the design requirements.
- Seismic design in performance category C2, without ductility requirements on anchors (option a2) and elastic design according to EN 1992:2018. For chemical anchors subjected to shear stress it is assumed that the annular space between the anchor and the plate hole is filled (α_{gap} =1).
- The product ETAs for the anchors used in the concrete-side strength calculation are indicated below:
 - VIN-FIX chemical anchor according to ETA-20/0363;
 - HYB-FIX chemical anchor according to ETA-20/1285;
 - EPO-FIX chemical anchor according to ETA-23/0419;
 - SKR screw-in anchor according to ETA-24/0024;
 - AB1 mechanical anchor according to ETA-99/0010 (M16).

UK CONSTRUCTION PRODUCT EVALUATION

UKTA-0836-22/6373.