X-ONE

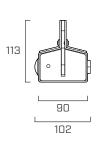
CODES AND DIMENSIONS

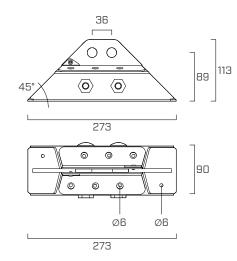
X-ONE

CODE	L	В	Н	L	В	Н	pcs
	[mm]	[mm]	[mm]	[in]	[in]	[in]	
XONE	273	90	113	10 3/4	3 1/2	4 1/2	1

MANUAL TEMPLATE

CODE	description	pcs
ATXONE	manual template for X-ONE assembly	1

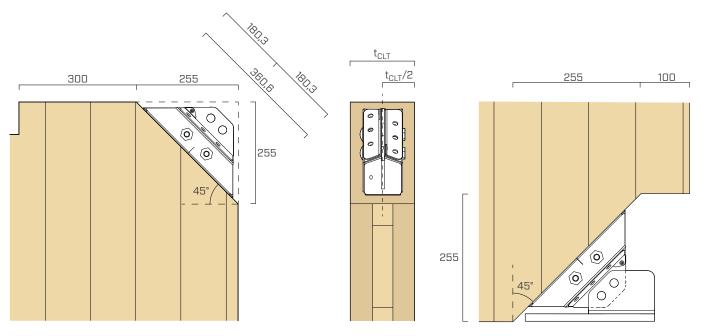

X-VGS SCREW


CODE	L	b	d_1	TX	pcs
	[mm]	[mm]	[mm]		
XVGS11350	350	340	11	TX50	25

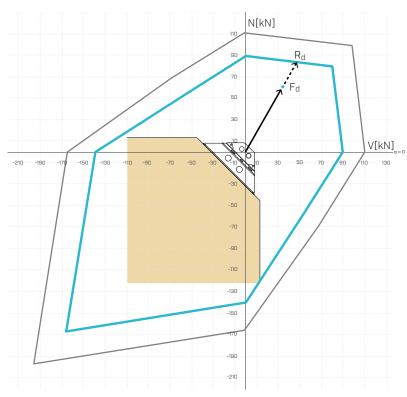
AUTOMATIC TEMPLATE

CODE	description	pcs
JIGONE	automatic template for X-ONE assembly	1

GEOMETRY



POSITIONING


Regardless of the panel thickness and its location on the construction site, the shear for fastening X-ONE is made at the top of the walls at 45°, and has a length of 360,6 mm.

INTER-STOREY AND TOP NODES SPECIAL STANDARD SHEAR

BOTTOM NODES SPECIAL STANDARD SHEAR

DESIGN STRENGTHS

The verification of the X-ONE connection is considered successful when the representative point of the $F_{\rm d}$ stress falls within the design strength domain:

$$F_d \leq R_d$$

The X-ONE design domain refers to the strength values and γ_M coefficients shown in the table and for loads with instantaneous life class (earthquake and wind).

LEGEND:

R_k R_d EN 1995-1-1

Design strength domain according to EN1995-1-1 and EN1993-1-8

A table summarizing the **characteristic strengths** in the various stress configurations and a reference to the relative safety coefficient according to the failure mode (steel or timber) is shown.

	GLOBAL STRENGTH	STRE COMPO		FAILURE MODES		PARTIAL SAFETY COEFFICIENTS ⁽¹⁾	
α	R _k	V _k	N_k			Υм	
	[kN]	[kN]	[kN]				
O°	111.6	111.6	0	VGS tension		$\gamma_{M2} = 1,25$	
45°	141,0	99,7	99,7	block tearing on M16 holes		γ _{M2} = 1,25	
90°	111.6	0,0	111.6	VGS tension		$y_{M2} = 1,25$	
135°	97,0	-68.6	68,6	VGS tension		γ _{M2} = 1,25	
180°	165.9	-165.9	0	VGS thread extract	2)))))	$\gamma_{M,timber} = 1.3$	
225°	279.6	-197.7	-197.7	timber compression	<i>2))))</i>]	$\gamma_{M,timber} = 1.3$	
270°	165.9	0,0	-165.9	thread withdrawal VGS	2)))))	$\gamma_{M,timber} = 1.3$	
315°	97,0	68,6	-68.6	VGS tension		γ _{M2} = 1,25	
360°	111.6	111.6	0	VGS tension		γ _{M2} = 1,25	

NOTES

⁽¹⁾ The partial safety coefficients should be taken according to the current regulations used for the calculation. The table shows the values on steel side according to EN1993-1-8 and on the timber side according to EN1995-1-1.