HYB-FIX

HIGH-PERFORMANCE HYBRID CHEMICAL ANCHOR

- Urethane-methacrylate based resin
- CE option 1 for cracked and uncracked concrete
- C2 Seismic performance category (M12-M24)
- Certified fire resistance F120
- Comply with LEED[®] v4.1 BETA
- A+ Class: emission of volatile organic compounds (VOC) in living environments
- Ideal for extra-heavy anchors and post-installed reinforcement rods
- Excellent long-term creep behaviour
- Dry or wet concrete
- Concrete with submerged holes
- Overhead application allowed
- Certified installation also with hollow drill bit

★ USA, Canada and more design values available online.

CODES AND DIMENSIONS

CODE	form	pcs	
	[ml]	[US fl oz]	
HYB280	280	9.47	12
HYB420	420	14.20	12

Expiry from date of manufacturing: 18 months.

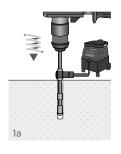
Storage temperature between +5 and +25° C.

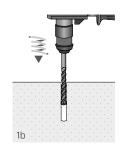
■ ADDITIONAL PRODUCTS - ACCESSORIES

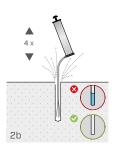
type	description	format	pcs
MAM400	gun for cartridge	420 ml	1
FLY	gun for cartridge	280 ml	1
STING	nozzle	-	12
STINGEXT	extension tube for nozzle	-	1
STINGRED	nozzle tip reducer	-	1
PLU	injection nozzle	M12 - M30	-
FILL	filling washer	M8 - M24	-
BRUH	steel pipe cleaner	M8 - M30	-
BRUHAND	grip and extension for pipe cleaner	-	1
IR (INTERNAL THREADED ROD)	bushing with internal metric thread	M8 - M16	-
PONY	blow pump	-	1
CAT	compressed air tool	-	1
HDE	hollow drill bit for concrete	M8 - M30	-
DUXHA	hollow drill bit for concrete	M16 - M30	-
DUISPS	class M suction system	-	1

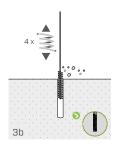
■ INSTALLATION TIME AND TEMPERATURE

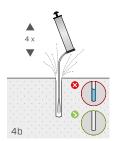
support	workability	curing time before loading			
temperature	time	dry support	wet support		
-5 ÷ -1 °C	50 min	5 h	10 h		
0 ÷ +4 °C	25 min	3,5 h	7 h		
+5 ÷ +9 °C	15 min	2 h	4 h		
+10 ÷ +14 °C	10 min	1 h	2 h		
+15 ÷ +19 °C	6 min	40 min	80 min		
+20 ÷ +29 °C	3 min	30 min	60 min		
+30 ÷ +40 °C	2 min	30 min	60 min		

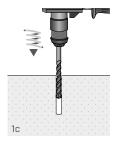

Cartridge storage temperature +5 - +40°.

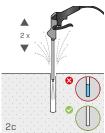

MOUNTING

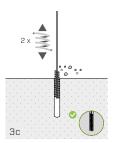

Hole execution: three different installation possibilities.

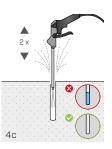

a. INSTALLATION WITH HOL-LOW DRILL BIT (HDE)


b. ASSEMBLY WITH HP + BRUH (only valid in non-cracked concrete)

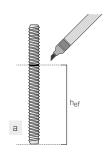


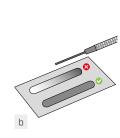


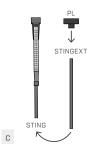




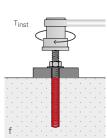
c. ASSEMBLY WITH CAT + BRUH

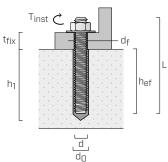






Rod installation:





INSTALLATION

h_{min}

INSTALLATION GEOMETRY FEATURES ON CONCRETE

THREADED RODS (INA or MGS TYPE)

d anchor diameter d_0

hole diameter in the concrete support

effective anchoring depth

160

9

10

200

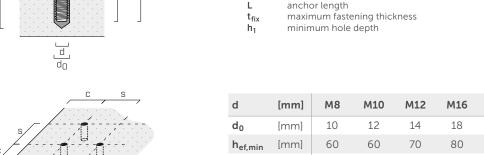
12

20

240

14

40


320

18

60

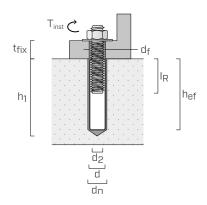
 h_{ef} hole diameter in the element to be fastened d_f

maximum tightening torque

h_{ef.max}

 T_{inst}

			M8	M10	M12	M16	M20	M24	M27	M30
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance	C _{min}	[mm]	35	40	45	50	60	65	75	80
Minimum thickness of concrete support	h _{min}	[mm]	h _{ef} +	30 ≥ 100) mm			h _{ef} + 2 d	0	


[mm]

[mm]

[Nm]

For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.

BUSHING WITH INTERNAL METRIC THREAD (IR TYPE)

internal threaded rod diameter ď diameter of the element anchored on concrete d_0 hole diameter in the concrete support $h_{\text{ef}} \\$ effective anchoring depth d_{f} hole diameter in the element to be fastened T_{inst} maximum tightening torque $\mathsf{t}_{\mathsf{fix}}$ maximum fastening thickness h_1 minimum hole depth length of internal threaded rod

M20

22

90

400

22

100

M24

28

96

480

26

170

M27

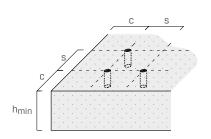
30

108

540

30

250


M30

35

120 600

33

300

		IR-M8	IR-M10	IR-M12	IR-M16
d ₂	[mm]	8	10	12	16
d	[mm]	12	16	20	24
d_0	[mm]	14	18	22	28
h _{ef,min}	[mm]	70	80	90	96
$h_{\text{ef,max}}$	[Nm]	240	320	400	480
d_{f}	[mm]	9	12	14	18
T _{inst}	[mm]	10	20	40	60
I _{R,min}	[mm]	8	10	12	16
I _{R,max}	[mm]	20	25	30	32

			IR-M8	IR-M10	IR-M12	IR-M16
Minimum spacing	s _{min}	[mm]	60	75	95	115
Minimum edge distance	c _{min}	[mm]	45	50	60	65
Minimum thickness of concrete support	h _{min}	[mm]	$h_{ef} + 30 \ge 100 \text{ mm}$		$h_{ef} + 2 d_0$	

For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.

STRUCTURAL CHARACTERISTIC VALUES

Valid for a single threaded rod (INA or MGS) in very thick C20/25 grade concrete with a thin reinforcing layer when spacing and edge-distance are not limiting parameters.

UNCRACKED CONCRETE^[1]

TENSION

rod	h _{ef,standard}	$N_{Rk,p}/N_{Rk,s}$ [kN]			h _{ef}	N _{Rk,s} ⁽²⁾ [kN]				
	[mm]	5.8 steel	Υм	8.8 steel	YΜ	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs
M8	80	18,0		29,0	$\gamma_{Ms} = 1.5^{(2)}$	≥ 80	18,0		29,0	
M10	90	29,0	$\gamma_{Ms} = 1.5^{(2)}$	42,0		≥ 100	29,0		46,0	
M12	110	42,0		56,8		≥ 130	42,0		67,0	1.5
M16	128	71,2		71,2		≥ 180	78,0	1 5	125,0	
$M20^{(3)}$	170	109,0		109,0	$\gamma_{MC} = 1,5^{(4)(5)}$	≥ 250	122,0	1,5	196,0	1,5
M24 ⁽³⁾	210	149,7	$\gamma_{Mc} = 1,5^{(4)(5)}$	149,7		≥ 325	176,0		282,0	
M27 ⁽³⁾	240	182,9		182,9		≥ 390	230,0		368,0	
M30 ⁽³⁾	270	218,2		218,2		≥ 440	280,0		449,0	

SHEAR

rod	h _{ef}	$V_{Rk,s}^{(2)}$ [kN]					
	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs		
M8	≥ 60	11,0		15,0			
M10	≥ 60	17,0		23,0	4.25		
M12	≥ 70	25,0		34,0			
M16	≥ 80	47,0	1 25	63,0			
M20 ⁽³⁾	≥ 100	74,0	1,25	98,0	1,25		
M24 ⁽³⁾	≥ 130	106,0		141,0			
M27 ⁽³⁾	≥ 155	138,0		184,0			
M30 ⁽³⁾	≥ 175	168,0		224,0			

CRACKED CONCRETE^[1]

TENSION

rod	h _{ef,standard}		$N_{Rk,p}$ [kN]			h _{ef,max}	$h_{ef,max}$ $N_{Rk,s}/N_{Rk,p}$ [kN]			
	[mm]	5.8 steel	YМр	8.8 steel	Υм	[mm]	5.8 steel	Υм	8.8 steel	ΥM
M8	80	14,1		14,1		160	18,0		28,2	$\gamma_{Mp} = 1.5^{(5)(6)}$
M10	90	21,2	$\gamma_{Mp} = 1,5^{(5)(6)}$	21,2	$\gamma_{Mp} = 1.5^{(5)(6)}$	200	29,0		46,0	
M12	110	33,2		33,2		240	42,0		67,0	$\gamma_{Ms} = 1,5^{(2)}$ $\gamma_{Mp} = 1,5^{(5)(6)}$
M16	128	49,9		49,9		320	78,0	1 =(2)	125,0	
$M20^{(3)}$	170	76,3		76,3		400	122,0	$\gamma_{Ms} = 1.5^{(2)}$	196,0	
M24 ⁽³⁾	210	104,8	$\gamma_{Mc} = 1.5^{(4)(5)}$	104,8	$\gamma_{MC} = 1,5^{(4)(5)}$	480	176,0		253,3	
M27 ⁽³⁾	240	128,0		128,0		540	230,0		320,6	
M30 ⁽³⁾	270	152,8		152,8		600	280,0		395,8	

SHEAR

rod	h _{ef,standard}	v _{Rk,s} ⁽²⁾ [kN]					
	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs		
M8	80	11,0		15,0			
M10	90	17,0		23,0			
M12	110	25,0		34,0	1.25		
M16	128	47,0	1,25	63,0			
$M20^{(3)}$	170	74,0	1,25	98,0	1,25		
M24 ⁽³⁾	210	106,0		141,0			
M27 ⁽³⁾	240	138,0		184,0			
M30 ⁽³⁾	270	168,0		224,0			

incremental factor for N _{Rk,p} ⁽⁷⁾						
	C25/30	1,02				
	C30/37	1,04				
Ψ_{c}	C40/50	1,08				
	C50/60	1,10				

NOTES

- (1) Refer to the relevant ETA document for use of rebars.
- (2) Steel failure mode.
- $^{\left(3\right) }$ Installation is only allowed with CAT and HDE.
- (4) Concrete cone failure method.
- $^{(5)}$ Valid concrete material safety coefficient value using CAT in the installation. For different installation systems, use a coefficient of γ_M equal to 1,8.
- (6) Pull-out and concrete cone failure.
- ⁽⁷⁾ Tensile-strength increment factor (excluding steel and concrete cone failure) for both cracked and uncracked concrete.

GENERAL PRINCIPLES

- * The characteristic values are according to EN 1992-4:2018 with a factor $\alpha_{sus} {=} 0.6$ and in accordance with ETA-20/1285.
- The design values are obtained from the characteristic values as follows: $R_d=R_k/\gamma_M.$ Coefficients γ_M are listed in the table in accordance with the failure characteristics and product certificates.
- For the calculation of anchors with reduced spacing, or too close to the edge, please refer to ETA. Similarly, in case of fastening on concrete-supports with a better-grade, limited thickness or a thick reinforcing layer please see ETA.
- For the design of anchors subjected to seismic loading refer to ETA and to EN 1992-4:2018.
- For specifications of the diameters covered by the various certifications (cracked concrete, uncracked concrete, seismic applications), please refer to ETA.

Component A and Component B classification: Skin Sens. 1. May cause an allergic skin reaction.

STRUCTURAL CHARACTERISTIC VALUES

Valid for a single threaded rod (INA or MGS) when installed with IR in C20/25 grade concrete with a thin reinforcing layer, considering spacing, edge-distance, and base-concrete thickness as non-limiting parameters.

UNCRACKED CONCRETE[1]

TENSION

rod	h _{ef}	h _{min} ⁽²⁾	$N_{Rk,s}/N_{Rk,p}$ [kN]					
	[mm]	[mm]	5.8 steel	ΥMs	8.8 steel	Υм		
IR-M8	80	110	17,0		27,0	$\gamma_{Ms} = 1,5^{(3)}$		
IR-M10	80	116	29,0	1,5 ⁽³⁾	35,2	$\gamma_{MC} = 1.5^{(5)(6)}$		
IR-M12 ⁽⁴⁾	125	169	42,0	1,5	67,0	$\gamma_{Ms} = 1,5^{(3)}$		
IR-M16 ⁽⁴⁾	170	226	76,0		109,0	$\gamma_{Mc} = 1,5^{(5)(6)}$		

SHEAR

rod	h _{ef}	h _{min} ⁽²⁾	V _{Rk,s} (3) [kN]			
	[mm]	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs
IR-M8	80	110	9,0		14,0	
IR-M10	80	116	15,0	1,25	23,0	1 25
IR-M12 ⁽⁴⁾	125	169	21,0		34,0	1,25
IR-M16 ⁽⁴⁾	170	226	38,0		60,0	

CRACKED CONCRETE^[1]

TENSION

rod	h _{ef}	h _{min} ⁽²⁾	$N_{Rk,s}/N_{Rk,p}$ [kN]			h_{ef}	N _{Rk,s} ⁽³⁾ [kN]				
	[mm]	[mm]	5.8 steel	Υм	8.8 steel	Υм	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs
IR-M8	80	110	17,0	$\gamma_{Ms} = 1,5^{(3)}$	19,6	$\gamma_{Mc} = 1.5^{(6)(7)}$	≥ 120	17,0		27,0	
IR-M10	80	116	24,6	$\gamma_{Mc} = 1.5^{(5)(6)}$	24,6		≥ 150	29,0	1.5	46,0	1 5
IR-M12 ⁽⁴⁾	125	169	42,0	$\gamma_{Ms} = 1.5^{(3)}$	48,1	$\gamma_{Mc} = 1.5^{(5)(6)}$	≥ 180	42,0	1,5	67,0	1,5
IR-M16 ⁽⁴⁾	170	226	76,0		76,3		≥ 250	76,0		121,0	

SHEAR

rod	h _{ef}	h _{min} ⁽²⁾	V _{Rk,s} ⁽³⁾ [kN]			
	[mm]	[mm]	5.8 steel	ΥMs	8.8 steel	YMs
IR-M8	80	110	9,0	1,25	14,0	1,25
IR-M10	80	116	15,0		23,0	
IR-M12 ⁽⁴⁾	125	169	21,0		34,0	
IR-M16 ⁽⁴⁾	170	226	38,0		60,0	

incremental factor for N _{Rk,p} (8)					
	C25/30	1,02			
Ψ _c	C30/37	1,04			
	C40/50	1,08			
	C50/60	1,10			

NOTES

- $^{(1)}$ Refer to the relevant ETA document for use of rebars.
- (2) Minimum thickness of concrete support.
- (3) Steel failure mode.
- $^{\left(4\right)}$ Installation is only allowed with CAC and HDE.
- (5) Concrete cone failure method.
- $^{(6)}$ Valid concrete material safety coefficient value using CAT in the installation. For different installation systems, use a coefficient of γ_M equal to 1,8.
- (7) Pull-out and concrete cone failure.
- $^{(8)}$ Tensile-strength increment factor (excluding steel failure) for both cracked and uncracked concrete.

GENERAL PRINCIPLES

- The characteristic values are according to EN 1992-4:2018 with a factor $\alpha_{sus} {=}\, 0.6$ and in accordance with ETA-20/1285.
- The design values are obtained from the characteristic values as follows: $R_d = R_k/\gamma_M. \ \ Coefficients \ \gamma_M \ \ are listed in the table in accordance with the failure characteristics and product certificates.$
- For the calculation of anchors with reduced spacing, or too close to the edge, please refer to ETA. Similarly, in case of fastening on concrete-supports with a better-grade, limited thickness or a thick reinforcing layer please see ETA.
- For the design of anchors subjected to seismic loading refer to ETA and to EN 1992-4:2018.
- For specifications of the diameters covered by the various certifications (cracked concrete, uncracked concrete, seismic applications), please refer to ETA.

Component A and Component B classification: Skin Sens. 1. May cause an allergic skin reaction.